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Abstract. It is shown thaI the conventional sprn fluctuation (SF) theory of weak ittnerant magnets 
does not take into account the effects of strong spin anharmonicity caused by large zero-point 
SF amplitudes and, therefore, may break down in anhmonic magnets. A microscopic approach 
baed on a qu3sipadcle Fermi liquid descnption of strongly anhmonic weak itinemt magnets 
is presented generalizing the conventiand theory to accounl for both thermal and zero-point SF. 

Weak itinerant electron magnets close to a magnetic instability are usually described within 
the spin fluctuation (SF) theory which is believed to be well established on the microscopic 
basis related to the Hubbard model [1,2] or Fermi liquid concept 131. However, the main 
approximations of the SF theory remain unclear. In the present paper we show that the most 
crucial point of the conventional SF theory is due to the neglect of the zero-point SF effects, 
which conesponds to the weak-spin-anharmonicity limit. Recently we presented a theory 
accounting for the zero-point effects in strongly anharmonic itinerant magnets, which was 
based on the phenomenological quantum Ginzburg-Landau model [4]. Here we formulate 
a microscopic Fermi liquid approach accounting for the strong spin anharmonicity effects 
caused by large zero-point SF amplitudes in weak itinerant magnets. 

We start with the following model for the matrix elements of the Fourier transform of 
a quasiparticle energy Z(o) for a ferromagnetic Fermi liquid [5 ] :  

(U, p + hkl2lU', p )  = Zns,,sk,s(w)€"@) + &obo'w+"(, k) + sco.4wf(w, k)n(w, k) 
(1) 

which are assumed to be linear in the amplitudes m ( w .  k) and n(w, k) of spin and 
density fluctuations with a frequency o and wavevector k. Here c u b )  is the equilibrium 
energy of quasipartides without taking into account fluctuation effects, U = +l,  and 
p denote the spin and momentum, are the Pauli mabices and *(k) describes the 
exchange interaction of quasiparticles. The function &(w, k) accounts for the Coulomb 
interaction of quasiparticles and its dynamical screening by the crystal lattice. Below we set 
@&J, k) -+ 00 neglecting the coupling of SF to the lattice and electron density fluctuations 
(see [SI). Within this model the free energy treated as a function of the magnetization M 
and temperature T may be written in the conventional form [ 1-31 

F ( M .  T) = Fo(M, T) + A F ( M ,  T). (2) 
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Here Fo(M. T )  is the HartreeFock, or Stoner free energy, which for weak magnets may 
be expanded in terms of M ,  
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with the coefficients xo = ul(1 + Y v )  and yo = (3u” - vu”)/6u5, where U, U’, U” are the 
quasiparticle density of states and its derivatives at the Fermi level, and Q = Y(0) (we 
use the system of units with pg = 1, where is the Bohr magneton). The contribution 
A F ( M ,  T )  accounts for the SF effects and within the Fermi liquid model (1) may be written 
in the form (cf [ I ]  and [ 6 ] )  

where 

Equation (4) can he split into a thermal part containing No = [exp(hw/kBT) - I]-’ and a 
contribution due to zero-point SF. Here xLo)(w, k) are the transverse (U = t) and longitudinal 
( v  = I) dynamical magnetic susceptibilities of a Fermi liquid at Y = 0 and k) = 00 
(see, e.g., [5]) .  We treat the finite dynamical susceptibilities X&J, k) in the spirit of the 
Moriya-Kawabata theory [ l ]  as functions of M and take them in the conventional form 

(5 ) x;’(w, k) = xp’-‘(w, k) + w + h”(O. k). 

Here the functions h,(w, k) describe the effects of SF and vanish when these are neglected. 
When h,(w, k) -+ 0 equation (5) gives the magnetic susceptibilities [SI for the Fermi liquid 
model (1) with r&fi(o, k) = 00 and the SF effects neglected [5]. This is also related to the 
well known random phase approximation (RPA) [I ,  61. In the long-wavelength low-frequency 
limit we may write 

(6 )  A ” ( 0 ,  k) N h,,(O, 0) = A, 

where A, are defined self-consistently by the equations 

1 a A F  At = -- 
M aM 

a2AF 
1, = - 

aM2 
following from the coincidence of the static homogeneous susceptibilities ~ ” ( 0 . 0 )  = 
and the thermodynamic ones. 

dependences of h, and, following the Moriya-Kawabata theory [I], to set 
The approximation of the conventional SF approach, besides (6),  is to neglect Y and M 
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Below we show that both these inequalities are related to the weak-spin-anharmonicity limit 
and do not hold in real weak itinerant magnets where large zero-point SF amplitudes give 
rise to strong spin anharmonicity effects. 

Taking account of (9) the integration over Y in (4 )  yields the familiar result for the SF 
free energy [1-3], which i n  the rotationally invariant form is given by 

and in the limit A, = 0 is related to the RPA free energy of the paramagnon theory [6]. Taking 
account of the inequality (10) equations (7), ( 8 )  and (11) yield the following solution, e.g., 
for AI (cf [1-3]): 

(12) At = 11 = vd2Wm:), + (Sm:)~l+ 3[(8m&p + (@)TI) 
where 

are the zero-point and thermal contributions to the averaged squared amplitudes of transverse 
and longitudinal SP. In the conventional SF treatment [l-31 zero-point SF contributions to 
(12) are assumed to be temperature and magnetization independent, which allows us to 
incorporate them into the exchange parameter *(IC). 

However, the recent neutron scattering experiments in weak itinerant magnets [7-91 
presented direct evidence for large zero-point SF amplitudes strongly dependent on 
temperamre. This was also anticipated by Takahashi [lo] who accounted for the effects 
of the zero-point SF amplitude variation basing his calculation on the constraint of the 
approximate conservation of the total local magnetic moment. However, this constraint is 
not borne out by thermodynamics for weak itinerant magnets [4 ] .  

To illustrate these effects we may use the conventional form for the dynamical 
susceptibilities [1,2], x;'(w, IC) = x;' + ck2 - i w / r k ,  provided w < w, and k < k, 
are in the paramagnon region. Here c and r describe the spatial and time dispersions, 
0, rr kuF and k, are the cut-off frequency and wavevector, UF is the Fermi velocity. As was 
shown in neutron scattering experiments 191 this form may hold over the whole Brillouin 
zone up to the frequencies w - 8ksTc/h, where TC is the Curie temperature. We assume 
that the inverse susceptibilities are small enough, 

(15) ' -I xI,] << ckz 

not only near TC but also at IOW temperatures (see the discussion below) and expand the 
squared zero-point SF amplitudes (13) in powers of x;I (cf [IO]), 

(am:), = Jmf - (go/vo)x;' + . . . (16) 
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Here Sm: -?irk: is the squared amplitude of the zero-point SF at x;’ = 0 and 
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is the spin anharmonicity parameter [4,1 I ]  related to the zero-point SF. We want to 
emphasize that the derivation of equations (16) and (17) does not depend on the precise 
form for the dynamical susceptibilities used above and has a wide range of validity. Using 
the estimates 

following from (12) and (16) we conclude that inequalities (9) and (IO) hold in the weak-SF- 
coupling limit, when the spin anharmonicity parameter (17) is small, go << 1 ,  which actually 
is the main approximation ol the conventional SF theory. As we have recently shown [4,11], 
this approximation does not hold for the weak itinerant magnets MnSi, Ni3AI and ZrZnz. 
We also suspect that this is a general situation for itinerant magnets unlike, e.g., anharmonic 
crystals [12] where the anharmonicity parameter is usually small. 

Here we have to generalize the conventional SF theory 11-31 to account for the largc 
spin anhmonic i ty  effects caused by the zero-point SF. As was shown above, the role of 
these effects is twofold. First, they give rise to the variation of zero-point SF amplitudes, 
which may essentially affect thermal properties of itinerant magnets. Second, they may lead 
to the violation of the inequalities (9) and (10) and to the breakdown of the RPA expression 
( I  1) for the SF contribution to the free energy. Below we take into account both of these 
aspects of spin anharmonicity and calculate the free energy using a variational procedure 
instead of a perturbation one without any restrictions on the spin anharmonicity parameter 
go. 

In our description we must allow for the M and W dependences of A, = A,(M, W )  
and account for the finite derivatives aA.,/aM # 0. a A u / a W  = tv # 0 which are usually 
neglected [I-31. These derivatives are strongly affected by spin anharmonicity due to the 
zero-point SF and according to the estimate (IS) vanish in the weak-coupling limit, go -+ 0. 
Here we assume that tu are functions of the spin anharmonicity parameter go only and 
neglect their W and M dependences, which yields the following model for A,: 

A” = Lo(M) + E ,  W. (19) 

This assumption agrees with the estimates (18) and below it will he verified via the 
variational procedure. 

From (4), (5) and (19) follows the explicit formula 

for the SF contribution to the free energy, where AF& is given by (1 1). We emphasize that 
this formula accounts for the M and W depcndences of AV and differs from the conventional 
RPA like result (1 1) by the factors (l+tv)-’ describing anharmonic effects beyond the weak- 
coupling approximation of the existing theory [1-3]. 
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In principle, equations (5)-(8) and (20) form a complete set of equations to calculate the 
functions A J M ,  W) and E,(go). However, this task is rather complicated and we simplify it 
by expanding (20) in powers of the inverse susceptibilities x;'.  Similarly to (16) we have 

Here 8m; = kBTkr/2x2c is the thermal contribution (14) to the squared SF amplitude 
at x;' = 0, and kT = (T/T,)'I3kc is the characteristic wavevector of thermal SF in 
the quantum temperature range T << T,, where kBT, - fir& is the maximum energy 
of SF which in typical weak itinerant magnets is much greater than kBT, 121. The terms 
containing the spin anharmonicity parameter go account for the variation of the zero-point SF 
amplitudes (13). In equation (21) we have neglected the constant contribution independent 
of x1,l and the Ginzburg-Landau term - ksT(cXu)-3/2 which is not important outside the 
critical region [4,11] and is small when 

x;' << ck:. (22) 

Inequalities (15) and (22)  define the range of validity of the expansion (21) and do not 
necessarily require the anharmonicity parameter go to be small (see the discussion below). 

On the other hand, the SF free energy (21) may be also expanded in terms of the 
magnetization M provided the Ginzburg-Levanyuk criterion holds and the Landau theory 
of phase transitions is applicable. This allows us to find the solution of equations (5)-(8) 
and (21) expanding A,(M) in powers of M. Retaining terms up to the second order in M 
we have 

A,,,(M) = -5gw- '+  5y(8m; + 8m;) + ( y  -  yo)^* 

A ~ ( M )  = -5gu-I + 5 y ( ~ m ;  + 8m2,) + 3(y  -  yo)^' 

(23) 

(24) 

where g and y are the renormalized spin anharmonicity parameter and SF coupling constant 
given, respectively, by 

1 + 6 g  
go = g l - 5 g  

and 

1 - 5g 
Y = Yo- 

1 + 6g 

We also find the parameters 

Cl = 51 = -5g = 6 (27) 

which are independent of W, verifying the model (19) used above. Substituting relations 
(23)<26) into equations (5 )  and (21) we obtain the free energy (2) in the Landau form, 
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where 
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x - ' ( T )  = x ; ' ( l  - 5g) + 5 y ( ~ m :  + ~ m 2 , ) .  (29) 

A similar result may be obtained within the quantum Ginzburg-Landau model [4]. It follows 
from (2+08) that the anharmonic effects arising from the variation of the zero-point SF 
amplitudes (16) and from the Y dependence of A, given by (19) are equally important and 
are governed by the same parameter g = g(g0). 

Substituting the free energy (28) into the conventional equations of state, B = 
(aF/?JM)v and P = -[B(FV)/BV]MV, which define the magnetization M and volume 
V as functions of the magnetic field B and pressure P, we w i v e  at the magnetic equation 
of state 

(30) 
B - = ~ - ' ( O ) + y ( M ~ + 5 6 m ~ )  M 

and the magnetic contribution of the volume strain 

(31) 
CO 2 C CO 

wm = -(M& = ~ ( M ? ) T  + 3 $ ~ m :  - g/x (o)y I .  K 

Here K is the bulk modulus, CO = -%V2a(xoV)-l/aV and C = - ~ V 2 a ( x ( 0 ) V ) - ' / a V  Y 

Co(1- 5g) are the magnetoelastic coupling constants, unrenormalized and renormalized by 
zero-point SF, respectively and 

(M& = M 2  + C11Sm:)zp + (6m:)rl (32) 

and 

(M;)T = M2 + 3Sm: (33) 

are the local squared magnetic moments with and without the account of zero-point SF. In 
the above formulae we neglected the volume dependences of the SF coupling constant y 
and of the spatial and time dispersions of the dynamical spin susceptiblities. 

We now discuss our results with respect to the predictions of the conventional SF theory 
11-31, First, we emphasize that the equations of state (30) and (31) have essentially the same 
form as was found previously without zero-point SF, provided the temperature independent 
contribution to om caused by zero-point SF is neglected. Therefore, it is not possible 
to distinguish our results from the conventional ones, discussing only the magnetic or 
magnetovolume measurements. 

However, the parameters x - ' ( O ) ,  y and C in (30) and (31) incorporate thc effects of 
zero-point SF and differ from the initial ones, x; ' ,  yo and CO which enter the results of 
the conventional theory. In the weak-SF-coupling limit, when g N go << 1, y N yo and 
C N CO equations (29)<31) yield the magnetic equation of state [Z, 31 and expression for 
the magnetovolume effect [ 11 arising in the conventional SF theory, except for the constant 
contributions to x - ' ( O )  and w,, containing the squared zero-point SF amplitudes Smf, 
According to (25) and (26) the effects of spin anharmonicity due to zero-point SF reduce 
the SF and magnetoelastic coupling constants which vanish, y - yo/go and C - Co/go. 
in the limit of strong spin anharmonicity, when go >> 1 and g N 4. The Stoner crikrion, 
x- ' (O)  c 0, with x - ' ( O )  given by (29) is also modified with respect to the zero-point 
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SF effects which tend to suppress a ferromagnetic instability by reducing the negative 
contribution - x;' and adding the positive term - &ma. 

We also point out that the formulae presented above establish the link between the 
parameters x - ' ,  y and C which define the magnetic and magnetovolume properties of weak 
itinerant magnets and may be directly inferred from experiments, and the constants x;'. 
yo and CO related to the hand structure calculations (see, e.g., [13]). Our analysis which is 
based on a microscopic approach also gives some insight into the recent phenomenological 
description of thermal properties of weak itinerant magnets [1,2]. Although the authors 
of [ 1,2] formally neglected the zero-point SF effects they used the empirical parameters 
x-'(O) and y which as we show actually incorporate zero-point SF effects. This explains 
the success of the quantitative interpretation of the finite-temperature properties of a series 
of metals [I, 21, which is not obvious in view of the temperature dependent effects induced 
by zero-point SF. 

Finally, we discuss the validity of our approach which besides the well known Ginzburg- 
Levanyuk criterion is limited by the inequalities (15) and (22) allowing us to expand the SF 
contribution to the free energy (21) in terms of x;'. Using the magnetic equation of state 
(30) and the estimate for Sm? presented above we find from (15) that the present description 
is valid even at T = 0 provided the coefficient x - ' ( O )  and the spontaneous magnetization 
MO are small enough, and the Curie temperature TC is sufficiently low 

Similarly it follows from (22) that our approach is valid not only near T,, when IT - Tcl < 
Tc, but also far above TC provided 

We emphasize that inequalities (34) and (35) not only are satisfied in the weak-anharmonicity 
limit, go << 1, but also hold in strongly anhmonic itinerant magnets where go >> 1 and 
5g N 1, provided T,, >> Tc. 

The zero-point SF effects discussed here play an important role in weak itinerant magnets 
as was shown by the recent neutron scattering investigations [7-9] where large zero-point 
SF amplitudes, am, - 1 (in p~ per magnetic atom), were observed. Using the magnetic and 
neutron scattering data from [2] and [XI we can estimate the effects of anharmonicity caused 
by zero-point SF, e.g. for MnSi. Integrating (17) with the parameters [2, 81 c = 0.21 x lo5 A*, 
k, = 0.86 A-' and Ar = 2.6 peV A which describe the spatial and time dispersions of the 
dynamical susceptibilities and using the measured constant 121 y = 0.15 G-' we estimate 
the renormalized spin anharmonicity parameter [ I l l  g = 0.18, Then from (25) and (26) 
we calculate the unrenormalized quantities go = 5.4 and yo = 4.9 x G-'. These 
estimates show the importance of the zero-point SF effects which give rise to the strong spin 
anharmonicity not accounted for by the conventional SF theory of weak itinerant magnetism. 

To conclude, we have presented a new microscopic approach to describe the zero-point 
SF effects in anharmonic weak itinerant magnets. We showed that the two aspects of spin 
anhmonicity, one related to the temperature variation of zero-point SF amplitudes and the 
other giving rise to the anharmonic effects beyond the weak-coupling approximation are of 
equal importance for weak itinerant electron magnets. 
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